Deriving Correlation Matrices for Missing Financial Time-Series Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Cross-Correlation Dynamics in Financial Time Series

The dynamics of the equal-time cross-correlation matrix of multivariate financial time series is explored by examination of the eigenvalue spectrum over sliding time windows. Empirical results for the S&P 500 and the Dow Jones Euro Stoxx 50 indices reveal that the dynamics of the small eigenvalues of the cross-correlation matrix, over these time windows, oppose those of the largest eigenvalue. ...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Online Time Series Prediction with Missing Data

We consider the problem of time series prediction in the presence of missing data. We cast the problem as an online learning problem in which the goal of the learner is to minimize prediction error. We then devise an efficient algorithm for the problem, which is based on autoregressive model, and does not assume any structure on the missing data nor on the mechanism that generates the time seri...

متن کامل

Nonparametric HAC Estimation for Time Series Data With Missing Observations

The Newey and West (1987) estimator has become the standard way to estimate a heteroskedasticity and autocorrelation consistent (HAC) covariance matrix, but it does not immediately apply to time series with missing observations. We demonstrate that the intuitive approach to estimate the true spectrum of the underlying process using only the observed data leads to incorrect inference. Instead, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Economics and Finance

سال: 2018

ISSN: 1916-9728,1916-971X

DOI: 10.5539/ijef.v10n10p105